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The anisotropic interracial tension of the eight-vertex model is found by a new 
method, which introduces two inhomogeneous systems. As the width of the 
system becomes large, a doublet of the largest eigenvalues of the row-row 
transfer matrix is asymptotically degenerate. The anisotropic interracial tension 
is calculated from their finite-size correction terms in this limit. By the use of the 
anisotropic interracial tension, the equilibrium crystal shape of the eight-vertex 
model is derived via Wulff's construction. The equilibrium crystal shape is 
represented as a simple algebraic curve. We discuss the close relation between 
the algebraic curve and the form of an elliptic function appearing in the expres- 
sion of the interracial tension. 

KEY WORDS: Eight-vertex model; row-row transfer matrix; asymptotic 
degeneracy; interracial tension; equilibrium crystal shape. 

1. I N T R O D U C T I O N  

In the eight-vertex model an arrow is placed on every edge of a square 
lattice so that even number of arrows point into and out of each site (or 
vertex).  (1~ There  are eight  such con f igu ra t i ons  a r o u n d  a vertex (Fig. 1). 

W e  represen t  the a r row c o n f i g u r a t i o n  by  assoc ia t ing  a n  a r r o w - s p i n  c~ i wi th  
each edge i; ~z= +1  if the c o r r e s p o n d i n g  a r ro w  po in t s  up  or  to the right,  
a n d  e i = - 1  otherwise.  W h e n  a r row-sp ins  a r o u n d  a ver tex are v, c~, /~, 

a n d  /~ coun te rc lockwise  s ta r t ing  f rom the west  b o n d ,  a B o l t z m a n n  weight  
W(v,  ct]/3, kt) is ass igned  o n  this vertex, where  
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and 

W(+ + l +  + ) =  W ( -  - 1 -  - ) = a = e x p ( - e l / k B T )  

W(+ - I - + ) =  W ( -  + [ + - ) = b = e x p ( - e 2 / k B T )  

l V ( + - [ + - ) = I V ( - + [ - + ) = c = e x p ( - e 3 / k B T  ) 

W(+ + 1 -  - ) =  W ( -  - l +  + ) =  d =  exp(-e4/k  B T) 

(1.1a) 

W ( v , ~ l ~ , u ) = 0 ,  w # u =  - 1  (1.1b) 

This model was introduced as a generalization of the ice-type (or six- 
vertex) model. The situation of the ice-type model is as follows. Imagine a 
square ice where oxygen ions form a square lattice and a hydrogen ion (or 
a proton) is located near either end of each bond connecting an adjacent 
pair of oxygen ions. Because of the charge neutrality condition around each 
site, four protons surrounding each site should satisfy the ice-rule: two of 
them are close to it and the others are away from it on their respective 
bonds. By drawing an arrow on every edge, we represent which end of the 
bond is occupied by a proton. The ice-rule allows six local arrow con- 
figurations, which correspond to the vertices 1-6 in the eight-vertex model 
(Fig. 1). The ice-type model has some unusual features: the antiferroelectric 
phase transition is infinite order, i.e., the free energy and all its derivatives 
are finite at the critical temperature; in the ferroelectric ordered state, the 
ordering is complete even at nonzero temperatures, etc. (2) It is naturally 
thought that these features come from the ice-rule. To understand the 
effects of the ice-rule, Sutherland introduced the vertices 7 and 8. (3) 

The eight-vertex model can be regarded as an Ising model with two- 
and four-spin interactions. (1'4) To see this, we associate an Ising spin a~ 

c 

1 2 

+=+ 
5 6 

3 4 7 8 

Fig. 1. The eight possible arrow configurations around a vertex, and the corresponding 
Boltzmann weights. 
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with each site (i, j )  of the dual lattice; the site (i, j )  of the dual lattice 
is connected with the site (i, j )  of the original one by shifting in both 
directions by a half-lattice spacing (Fig. 2). An upward or right arrow 
corresponds to the cases where the adjacent a-spins are parallel; otherwise, 
the adjacent ~r-spins are antiparallel. The condition (1.1b) ensures that this 
correspondence is consistent. To any arrow configuration, there correspond 
two o--spin configurations, which are related to each other by the transfor- 
mation defined by ~r0.~ -o-ij for all i, j. The Hamiltonian of the Ising 
model is given by 

E = - - ~  (Jl(Ti, j+ l(Ti+ l,j-~- J2(Tijai+ l,j+ l 
ij 

-k J3ff ij(ri+ x,jO-i+ 1,j+ x Cri, j+ 1) (1.2) 

where next-nearest-neighbor spins are coupled by J1 and J2, depending on 
the direction of the diagonal; J3 couples four spins on a unit square. The 
four Boltzmann weights in ( l . la)  are related to J1, J2, and J3 as follows: 

4Jt ] ad [- 4J  2 ] ac ~ 4J  3 ] =ab  (1.3) 
exp [_k. VJ = b-c' exp L k ~ J  = b-d' exp I _ ~ J  c--d 

When a, b, c, and d satisfy the relation 

ab = cd (1.4) 

0"ei 01el ~e~ 01e2 0-5a 
/.z41 -#42@- #4a 

153 0"64 0164 a66 

,, /.z44-@#4~ 

fill 0111 O'12 0112 0"13 0113 0-14 0(14 0"16 

Fig. 2. The arrow-spins e and fl are associated with the edges of the square lattice; the Ising 
spins a are associated with the sites of the dual lattice. 
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this Ising model factors into two independent nearest-neighbor Ising 
models. 

Recently, equilibrium crystal shapes (ECSs) have attracted much 
attention. The first exact analysis of ECSs was done for the square-lattice 
nearest-neighbor Ising model by Rottman and Wortis (5) and Avron et aL (6) 
The traditional method to find the ECS is the so-called Wulff construction, 
where we need information about the interfacial tension with its full 
anisotropy. (7) For the square-lattice nearest-neighbor Ising model, it has 
been proved that the anisotropic interfacial tension is simply related to the 
anisotropic correlation length. (8) Furthermore, the anisotropic interracial 
tension has been calculated by the Pfaffian method. ~ By the use of these 
results, the ECS has been derived via Wulff's construction. Zia and Avron 
showed that the ECS of this model can be represented as a simple algebraic 
curve. (1~ For example, when the interactions are isotropic, the ECS is 
given by 

cosh(AX/kB  T) + cosh(A Y/k  H T) = C I (1.5a) 

C~ = cosh(2J/kB r) / tanh(2 I Jl/kB T) (1.5b ) 

where (X, Y) is the position vector of a point on the ECS; A is a scale 
factor; and J is the interaction constant. Zia similarly found that the ECSs 
of the triangular and honeycomb lattice nearest-neighbor Ising models are 
also written as an algebraic curve like (1.5). (m For any Ising model on 
the planar lattice without bond crossings, Holzer (~2~ and Akutsu and 
Akutsu (x31 pointed out that the interface can be represented as a free 
random walk defined on the dual lattice. The free random walk is derived 
by the use of the Feynman Vdovichenko method (14~ and characterized by 
the algebraic curve of the ECS. 

van Beijeren (is) and Jayaprakash etal .  ~16) regarded the six-vertex 
model as a solid-on-solid model on a body-centered-cubic lattice (BCSOS 
model), and discussed the roughening transition of a three-dimensional 
crystal. They utilized the fact that the six-vertex model can be solved in 
external field. (~7~ Akutsu and Akutsu reexamined the facet shape of the 
BCSOS model (or equivalently the ECS of the six-vertex model). (13) They 
found that the facet shape can be written in the same form (1.5a), with CI 
replaced by 

CBc = k 1/2(x) + k - 1/2(x) (1.6a) 

where k (x )  is defined as 

n= ~ 1 "t- X 4 n - 2  (1.6b) 

and x is given by (3.5). Since the BCSOS model cannot be solved by the 
Feynman-Vdovichenko method, the free-random-walk representation is 



Eight-Vertex Model 127 

not directly applicable to the step of this model. Discussing long-distance 
behavior, Akutsu and Akutsu suggested that the step of the BCSOS model 
has the same free-random-walk character as the interface of the square- 
lattice nearest-neighbor Ising model. 

In connection with these free-random-walk problems, it is desirable to 
analyze the ECS of the eight-vertex model, which contains the square- 
lattice nearest-neighbor Ising model and the six-vertex (or BCSOS) model 
as special limits. For the eight-vertex model, Baxter obtained the interfacial 
tension along a special direction by the usual transfer matrix method. (1'Is) 
The usual transfer matrix method, however, is not applicable to the 
calculation of the anisotropy. In previous work, to find the anisotropic 
correlation length and the anisotropic interfacial tension of the hard- 
hexagon model, we developed a new method which introduces the shift 
operator into the usual transfer matrix method. !19'2~ In the present paper 
we calculate the anisotropic interfacial tension of the eight-vertex model by 
this shift operator method. Then, the ECS of the eight-vertex model is 
derived via Wulff's construction. 

This paper is organized as follows. In Section 2 we explain the shift 
operator method of calculating the anisotropic interfacial tension of the 
eight-vertex model, Two inhomogeneous systems are defined; each 
inhomogeneous system consists of two regions; one of the two regions 
works as the (coiumn--column) shift operator. These inhomogeneous 
systems are analyzed by Baxter's commuting transfer matrices argu- 
ment. (~'2~ We introduce a one-parameter family of commuting transfer 
matrices. Then an equation for the eigenvalues of the transfer matrix is 
derived. In Section 3, we outline the calculation of solving the equation and 
give the explicit forms of the eigenvalues; details of the calculation is shown 
in Appendix B. It is found that a doublet of the largest eigenvalues is 
asymptotically degenerate when the width of the system becomes large. The 
anisotropic interfacial tension is obtained from the finite-size correction 
terms of the doublet of the largest eigenvalues in this limit. In Section 4, 
using the calculated interfacial tension, we find the ECS via Wulff's con- 
struction. We discuss the relation between the ECS and the elliptic solution 
of the interfacial tension given in Section 3. Section 5 is devoted to a 
summary and discussion. Appendix A lists definitions of elliptic functions 
and relations among them. 

2. A N I S O T R O P I C  I N T E R F A C I A L  T E N S I O N  1 

In this section we explain a method to calculate the anisotropic inter- 
facial tension of the eight-vertex model. We introduce two inhomogeneous 
systems. {2m Then we show how these inhomogeneous systems are 

822/67/1-2-9 
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investigated by Baxter's commuting transfer matrices argument. (1"2~) In the 
following analysis, it is convenient to parametrize the Boltzmann weights 
(1.1a) by four variables p, k, 4, and u: 

a = - i p O ( i Z )  HEi (Z  - u)/2] O[i(2 + u)/2] 

b = - ipO( i2)  0[ i (2  - u)/2] H [ i ( 2  + u)/2] 
(2.1) 

c = - i p H ( i 2 )  O[i(2 - u)/2] O[i(2 + u)/2] 

d =  ip H(  iZ ) H[i(2 - u)/2] HE i( )o + u)/2] 

where p is a normalization factor of the partition function and 2~, u appear 
as arguments of the elliptic functions. The elliptic modulus k is suppressed 
here. We denote the quarter-periods by I and I'. For definitions of the 
elliptic functions, see Appendix A. 

Consider the eight-vertex model on a square lattice with (1 + t / ) M  
columns and N rows [(1 + q) M, N even]. It is assumed that p and u can 
vary from column to column. (2~ The values of p and u on t h e j t h  column 
are denoted by & and uj, respectively. We define the anisotropic interracial 
tension, using two inhomogeneous systems: 

U l Z U 2  ~ . . -  ~ b / M ~ U O  ~ 

. . . . .  uo+ ,M = T2 

P l  = P 2  . . . . .  PM=Po,  

= i/O(O) O(i2) H(i)~) 

b / M +  1 "~- b / M + 2  

PM + i =PM+2 . . . . .  P(I +,)M 

The system with the upper (lower) sign is called (A) [(B)]. Because of 
various symmetry properties, we restrict ourselves to the parameter regime 

0 < k < l ,  0 < ) ~ < I ' ,  - 2 < U o < , ~ ,  p o > 0  (2.2) 

without loss of generality. (1'22) The region where u j=  Uo for 1 < j <  M is in 
an antiferroelectric ordered state dominated by the vertices 5 and 6. 

We impose on (A) and (B) periodic boundary conditions along the 
horizontal direction and antiperiodic boundary conditions along the 
vertical direction. Then, the antiperiodic boundary conditions force an 
interface into the region u j = u o .  In the region u j = - , ~  (or)~) for 
M +  1 < j <  (1 +t/)  M, the arrow configuration around the site (j, k) is 
identical with that of the site ( j +  1, k +  1) [or ( j +  1, k -  1)]. Therefore, 
the region uj = - 2  (or 2) slopes the interface by shifting the endpoint on 
the Mth  column from the endpoint on the first column downward (or 
upward) by M~/lattice spacings (Fig. 3). We represent the average slope of 
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Fig. 3. Typical configuration of the inhomogeneous system (A) in the zero-temperature limit. 
The region uj = Uo is represented by solid lines, and the region uj = - 2  by broken lines. In the 
region uj = Uo two antiferroelectric ordered phases dominated by the vertices 5 and 6 coexist. 
Across the region uj = u 0, there is an interface. The interface consists of the vertices 1 and 3, 
which are shown by open circles. Because of the region uj= -2,  the interface is sloped. 

the interface by 0• which is the angle between the horizontal  axis and the 
normal  vector of  the line connecting the two endpoints of  the interface 
drawn from the lower phase toward  the upper  one. The parameter  r/ is 
related to 0z by 

(A) r /=  1/tan 0• 0 < 0L < ~/2 (2.3a) 

(B) q = - 1/tan 0• ~/2 < 0a < ~ (2.3b) 

Let (1~ Z M N ( O •  (0 < 0• < ~) be the part i t ion function of (A) and (B) with the 
boundary  conditions. If  periodic boundary  conditions are imposed along 
both  directions, we denote corresponding part i t ion function by 7 (~ The M N "  

anisotropic interfacial tension or(01) is defined as 

~ ( 0 •  - k B T s i n 0 ~  lim M - ~ l n [ Z ~ ( O •  
M , N  ~ o o  

0 < 0 •  

(2.4) 

where the limit is taken with 0• (or q) fixed to be constant.  
When  Baxter solved the eight-vertex model, he found a one-parameter  

family of commut ing  transfer matrices. (1'21/ Then he used an equat ion for 
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P-1 
. . . . . . . . . .  " " 1  . . . . . . . . . .  

0(i f~Y-2 OCM C(M+I (Y~(I+~)M 

Fig. 4. A row of the generalized system (A) [or (B)l. 

the transfer matrix to determine the explicit forms of their eigenvalues. He 
suggested that the commuting transfer matrices argument is applicable to 
the inhomogeneous systems where u and p can vary from column to 
column. The partition functions of (A) and (B) in (2.4) are calculated by 
Baxter's commuting transfer matrices argument as follows. First, to intro- 
duce a one-parameter family of commuting transfer matrices, the systems 
(A) and (B) are generalized: we set the u / to  be 

U l ~ U 2  ~ - . . .  ~ b / M ~ - - -  v 

U M + I ~ U M + 2  ~ - . .  ~ U ( I + q ) M ~ / ) - - / g 0 - ~ - / ~  

Hereafter, unless otherwise mentioned, we regard v as a complex variable 
and k, )v, Uo, and Po as constants. The upper (lower) sign corresponds 
to the generalized system (A) [(B)]. (Throughout this section, we use 
this convention.) Let c~= {~1, ~2,'", ~(l+r/)M} and /3--{ill, fl: ..... /?<,+,)M} 
be the arrow-spins on two successive rows of vertical edges; let 
/~ = {#1, #2,..., #<1 +,/M} be the arrow-spins on the row intervening between 

and /3 (Fig. 4). The row-row transfer matrix is a 2 (I+")M by 2 (I+")M 
matrix with the elements 

M 

[v(v)]:,~=y' I] w(~+,~+16+,~++,l v) 
,u j = l  

( 1 +  r / ) M  

x 1-[ m ( ~ k , ~ k l ~ k , # k + l l V - - U o - T - 2 )  (2.5) 
k = M + l  

where W's are given by (1.1) with (2.1); periodic boundary conditions 
along the horizontal direction are assumed: #<1+,)M+1=#1. For all 
complex numbers v and v', V(v) and V(v') commute with each other, being 
simultaneously diagonalized. The eigenvalues of V(v) are denoted by V(v). 

Second, an equation for V(v) is derived. We define a set of 
2 (1 +")M-dimensional vectors y(v). Each vector y(v) is of the form 

y ( v ) = g l ( v ) | 1 7 4  ...  |  

| g M + l ( v - u o ~ 2 ) |  . - .  Q g ( l + , t ) M Q J - - U o ~ ) v )  (2.6) 
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where 

=(&(+]v)] ( O[isj+i(v+2)[j2] ~ (2.7) 
gj(v) \ & ( _ i v ) j = \ ( _ ) ~ +  1 i---iH[ s j + i ( v + 2 ) # j 2 ] ]  

Each ~j has a value + 1 or - 1 and the ~'j satisfy the condition 

~l-~ff2-t- ' ' "  "~ ~ ( I + r / ) M = 0  (2.8) 

The variables sj are given by 

L j =  1 
s j =  (2.9) 

g + 2 ( f f l + ~ 2 +  -"  +~j-1) ,  j = 2 ,  3,..., (1 +r/) M 

with an arbitrary constant g. It can be shown that 

V(v) y(v) = ~bl(V) y(v + 22') + ~b2(v) y(v - 22') (2.10) 

where 2' = 2 - 2 i / and  

~bl(v) = {p lh[ (2 -v ) /2]}  M {pM+lh[(2--V+Uo+_2)/2]} ~t~ (2.11a) 

%2(v)-- {p,h[(2+v)/2]}  M {pM+lh[( l+V-Uo-T2) /2]}  M" (2.11b) 

h(v) = - iO(O) O(iv) H(iv) (2.1 lc) 

There exist many 2(~+")M-dimensional vectors y(v), corresponding to 
different choices of g and the ~j. Using a complete set of vectors y(v), 
we can construct a nonsingular matrix Q(v) which satisfies the matrix 
equation 

V(v) Q(v ) :~ l ( v )Q(v+22 ' )+O2(v )Q(v -22 '  ) (2.12) 

Since Q(v) commutes with Q(v') and V(v") for all values of v, v', and v', 
we get the equation for V(v) 

V(v) q(v) = r q(v + 22') + r q(v - 22') (2.13) 

where q(v) is the eigenvalue of Q(v) corresponding to V(v). 
Two matrices S and R are introduced; S is the diagonal matrix which 

has entries +1 (or - 1 )  for arrow configurations of an even (or odd) 
number of down arrows; R is the matrix which has the effect of reversing 
all arrows; we shall use R to impose the antiperiodic boundary conditions 
along the vertical direction. The matrices S, R, Q(v), and V(v') commute 
with each other for all values of v and v'. The eigenvalue of S (or R) 
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corresponding to V(v) and q(v) is denoted by s (or r); r takes a value of 
+ 1 or - 1. Detailed investigation shows that q(v) must be of the form 

q(v)=exp(~v) l~ h ( ~ )  (2.14) 
j = l  

where m = (1 +r/) M/2. The zeros vj and a constant ~ are determined by the 
condition that the rhs of (2.13) vanishes, 

hi(2  - vj)/23 if v, ~'h [-(2 - vj + u0 +_ 2)/23 -~M, 
h[(,~ + vj)/2]J [h[()~ + v j -  Uo -T- 2)/2]3 

f l  h [ ( v j -  v e -  22)/2] 
~ ~X p ~ k=, h [ ( v i -  vk+22)/23 (2.15) 

for j = 1, 2,..., m, and the sum rules 

M 
U1Jf- U2 ~- ...--~-Orn--Til(l..tO"~-2) 

1 
= ~ ( s - l + 2 m ) I ' + i ( r s - l + 2 m ) I + 2 p T + 4 p i I  (2.16a) 

= =(s - 1 + 2m + 4p')/81 (2.16b) 

where p, p' are integers. The sum rules (2.16) come from the periodicity 
relations 

q(v + 4ii) = sq(v) (2.17a) 

q(v+2I ' )=rsq-m/2exp{[M(1 +q) v-M~12] ~/4I} q(v) (2.17b) 

The eigenvalues V(v) can be calculated by solving (2.15) with (2.16), 
and then by using (2.14) in (2.13) with the solutions vj and ~. There are 
many eigenvalues, corresponding to the different solutions of (2.15). After 
the eigenvalues V(v) are determined, we can get the information needed 
to obtain the anisotropic interfacial tension by letting V=Uo. The two 
partition functions in (2.4) are represented as 

Z ~  = Tr[VN(uo) R n] = ~ V~(uo) r~ (2.18) 
J 

where Vj(uo) and rj are the j t h  eigenvalues of V(uo) and R, respectively. 
Note that R is inserted to impose two different of boundary conditions 
along the vertical direction: periodic boundary conditions for n = 0 (mod 2) 
and antiperiodic boundary conditions for n = 1 (mod 2). 
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3. A N I S O T R O P I C  INTERFACIAL  T E N S I O N  2 

Following the program given in Section 2, we find the anisotropic 
interracial tension of the eight-vertex model. The calculation in this section 
is an extension of Baxter. (1'18) Since the calculational method is almost the 
same for any value of Uo, it is sufficient to consider the case Uo = 0. In the 
case Uo--0, the generalized system (A) contains both original systems (A) 
and (B): the original system (A) corresponds to the v ~ 0  limit; if we 
redefine the pj as 

Pl = P2 . . . . .  PM = ;/O(0) O(i;~) I-I(i;~) 

PM+~ =PM+a . . . . .  P(I+,~M = Po 

the generalized system (A) reduces to the original system (B) as v --+ 2. For 
the system (B) given by the v--+ 2 limit, (2.3b) should be replaced by 

(B) r/= - t a n  01, 7z/2 < 0• < ~ (2.3b') 

We investigate the commuting transfer matrices argument for the 
generalized system (A) only. Equations (2.13)-(2.16) are used with Uo=0 
and the upper sign. For convenience, we define P(v) by 

P(v) = (J,(v) q(v + 22')/(~2(v ) q(v - 22') (3.1) 

and rewrite (2.13) as 

V(v) q(v) = ~2(v) q(v - 22')[1 + P(v)] (3.2a) 

= ~I(U) q(v + 22')[1 + 1/P(v)] (3.2b) 

Analysis is restricted to the parameter regime 

0 < k < l ,  0 < 2 < I ' ,  0 <  Re(v)<2,  p o > 0  (3.3) 

In the regime (3.3) two antiferroelectric ordered states dominated by the 
vertices 5 and 6 are degenerate. It is expected that a doublet of the largest 
eigenvalues of V(v) is asymptotically degenerate as M + oo (with t/fixed to 
be constant). These eigenvalues are found in a zero-temperature analysis. 
Then we return to nonzero temperatures and determine their asymptotic 
forms as M--+ oo. Using the asymptotic forms, we estimate the two parti- 
tion functions Z~t)N in (2.4) for large M, N. The anisotropic interfacial 
tension is given by the finite-size correction terms of the doublet of the 
largest eigenvalues in the M--+ c~ limit. 

In the parametrization (2.1) the zero-temperature limit corresponds 
to the k ~ 0 and I', 2, v--+ oo limit, with the ratios 2/I', vii '  being order 



134 Fujimoto 

of unity. It is supposed that 0 < R e ( v j ) < 2  for all j. Then, the zero- 
temperature analysis of (2.15) and (2.16) shows that 

z = 0 ,  s = ( - 1 )  ~, ~ ~ = r x  M"/2 (3.4) 
j = l  

where 

zj = exp( - nv/2I), x = exp( - n2/2I) (3.5) 

Because of the sum rules (2.16), z and H~=I zj take discrete values. The 
eigenvalue s takes a value of + 1 or - 1 .  We expect that z, s, and 17Ij~ 1 zj 
keep their zero-temperature values (3.4) throughout the regime (3.3) 
without discontinuous changes. According as r = +1 or - 1 ,  the v i and 
P(v) behave in the zero-temperature limit as 

21 [ ( r + l ! ]  t/ 2 (3.6) 
V J ~ m i  2 j - m  2 + l + t /  

Pr(v) ~ r ( -  1) m z m x  Mq/2 

with 

- r a i n { 0 ,  2 2 + 3 t / 2 }  (~, )  { ~ l + t /  F < R e  < m i n  ~,,2 2+q_ 
l + q l J  

1 + t/I' < Re < I-- 

q < l + t /  1 ' - 2  

(3.7a) 

(3.7b) 

(3.7c) 

where 

z = exp( - nv/2I) (3.8) 

The regions of applicability of the three conditions (3.7a)-(3.7c) are shown 
in Fig. 5. Using (3.6) and (3.7) in (3.2), we find two eigenvalues 

l z ( x ,  _ M Mq m/2 2m vr'v'~rul,, ~ PM+lq X ~ r  
(1 + r / ) M  

I-I cj, r =  +_1 (3.9) 
j = l  

The Boltzmann weights aj, bj, cj, and dj are given by (2.1), with p = pj and 
u = uj. Note that in the zero-temperature limit cj > aj, b j, d~ for all j. We 
identify the two eigenvalues Vr(v) as the doublet of the largest eigenvalues. 
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x/f 

1 

2+2r/ 
2+3~? 

~7 N / I '  
1+~7 

/ 
/ I I / '  

1 2 
> Re (v / I ' )  

Fig. 5. The regions of the applicability of the three conditions (3.7a)-(3.7c). 

Here,  we return to nonzero  tempera tures  and calculate the asymptot ic  
behavior  of Pr(V) and Vr(v) as M ~  oo. The  zero- tempera ture  results (3.7) 
and (3.9) satisfy the following conditions: 

(i) Fo r  large M a con tour  C defined by [Pr(v)l = 1 is found in the 
region 0 < Re(v) < 2; the vj lie on the con tour  C. 

(ii) There  exists a real, positive number  6 such that  Pr(v)  is 
exponent ial ly  larger than  1 as M ~ oo if v is between the contour  C and the 
line R e ( v ) =  - 6 ;  Pr(v )  is exponent ial ly  smaller than  1 if v is between the 
con tour  C and the line R e ( v ) =  2 + 6. 

(iii) Vr(v)  is analytic and nonzero  (ANZ)  for 0 < R e ( v ) <  2. 

We assume that  (i)-(iii) hold true for sufficiently low temperatures:  
0 < k < e. Then, after some calculations, it is found that  for 0 < k < e and 
large M 

Pr(v) ~ rpM(v)  pM"(v  -- )v), 

where 

pM(V) pM(V -- 2I ' )  pM"(v -- )o) 

• pM"(v  --  ~. -- 2I ' ) ,  

v e the region a (3.10a) 

v s the region b (3.10b) 

v e t h e  region c (3.10c) 

p ( u )  = ( -- Z)1/2 f ( x z  -1 ,  x 4 ) / f ( x z ,  x 4)  (3.11) 

and f ( z ,  X 4)  is given by (A.6a) in Appendix A. In the complex v plane, 
the three regions a, b, and c are defined as follows: for a given point  v, 
choose a point  v c on C such that  I m ( v ) =  Im(vc) ;  v is in the region a if 
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Iv - VcL < min{22, 21' - 22}, in the region b if 22 < v - vc < 21' - 22, in the 
region c if 2 I ' - 2 2 < v - v c < 2 2  (Fig. 6). Because of the periodicity 
relations Pr(V + 2I') = Pr(v + 4i/) = Pr(v), Eqs. (3.10) determine Pr(v) for 
all v. For  0 < k < e, we also find that as M ~ oo, 

V,(v) ~ r~(v), 0 < Re(v) < )~ (3.12) 

where 

( T P l ) M ~ = = o A [ V + ( 4 n + 3 ) 2 ] A [ v + 2 1 ' + ( 4 n - 1 ) 2 ]  
K(v)= --~ A [ v + ( 4 n + 5 ) 2 ] A [ v + 2 I ' + ( 4 n + l ) 2 ]  

f i  A [ ( 4 n + 3 ) 2 - v ] A [ ( 4 n - 1 ) 2 - v + 2 I ' ]  
X 

, = o A [ ( 4 n + 5 ) 2 - v ] A [ ( 4 n + l ) 2  v+~7-]  

A"[v+  ( 4 n + 2 )  2] 

.=o A " [ v + ( 4 n + 4 )  2] 
A~[v + 2I' + 4n2] 

A~[(4n + 4) 2 -  v] A"[4n2 - v + 2I ' ]  
(3.13) 

• 11 A,[-~nT-6~2--~]~-~[-~-~--2-)-~Zv+SI,]  
n ~ 0  

2iI 

v X - 

o 

- 2 i I  

] v - p l a n e  

L.L--L- i ..... 

(a) 

x/I' 

. . . . . . . . . . . . .  ; . . . . . . . . . .  . . . . . . . . . .  

~ :v / r  
-vc/I' 

(b) 
Fig. 6. The three regions a, b, and c in (3.10). (a) For a given point v, choose a point v c on 
the contour C so that Im(v) = Im(vc). (b) Then, using v -  Vc, we define three regions a, b, 
and e. 
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with 

7=ql/40(0) f l  ( l - q 2 " )  2 (3.14) 
n = l  

A(v) = l~I [1 - q" exp(- r tv /2I ) ]  M (3.15) 
n ~ 0  

In the k ~ 0  limit, (3.10) reproduces the zero-temperature result (3.7); 
(3.12) reproduces (3.9). Furthermore, the solutions (3.10) and (3.12) satisfy 
the three conditions (i)-(iii) for 0 < k < t. These facts show that (3.10) and 
(3.12) give the correct leading behavior of V,.(v) and Pr(V) as M--+ 0% 
respectively, throughout the regime (3.3). [Detailed derivations of (3.10) 
and (3.12) are shown in Appendix B.] 

In (3.12) the leading terms of Vr(V) as M--+ oo are equal in magnitude 
and opposite in sign. From the calculation of the finite-size correction 
terms, it is found that they are asymptotically degenerate as M--+ c~. (18) 
For 0 < 2 < 1'/2, the finite-size correction terms are easily obtained. If M is 
finite, we get the integral equation 

l-,' rlV> 1 In L ~---~(~-J 
1 ~)o+2il 

= ~dJ,~,-2il dr' ln[1 + P f i v ' ) ]  O(v-v ' )  

where 

,r+,,l E 1] 8~i0 2iidv'ln 1 + ~  D(v-v') ,  0 < R e ( v ) < 2  (3.16) 

~ x 2 n z  - i x 2 n  + 2 Z 

D ( v ) = l + 2  (--1)  ~ [ ~- -~5;-W2zj (3.17) 
n = 0 1 - -  x 2 n 2  1 1 

(Appendix B). Subtracting (3.16) with r =  - 1  from that with r =  +1 gives 

dv, ln[ l  + P +(v')l 
l + P _  (v')J D(v - v') 

{~I ' ) -  2il dr '  In D(v - v'), + 1/P_(v )J 

In 
v_(v) J 

1 ~+2ii 

O < R e ( v ) < 2  (3.18) 
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For large M, using (3.10a), we estimate the logarithms in the integrands of 
(3.18) as 

l n [  I+~]~P+(v')-P1 + P_ ( v ) j  (V')~2pM(o')PM'7(V'--'~) (3.19a) 

l n I l +  1/P+(v')] 1 1 
+l/P (v')J t~+(v') P_(v') 

2 
(3.19b) pM(v, ) pM. (v'-,~) 

and integrate (3.18) by the method of steepest descent. Noting the relation 
p(v + 22) = tip(v), we get 

- -V+(v) /V_(v)~ l+~(v)pM(Vs)pm'7(vs - -2)+ ... (3.20) 

where v~ is the saddle point of Ip(v) p" ( v -  2)1, determined by 

f(Zs, x4) f(X2Zs, x4) f(--XZ,, x4) f(--X3Zs, X 4) 

tl = - f ( - z , ,  x4 ) f ( -x2z~ ,  xa)f(XZs, x4)f(x3z, ,  x 4) (3.21a) 

z~ = exp( - ~zvs/2I) (3.21b) 

with the condition 

v, = 2 + 2iL t /= 0 (3.21c) 

The explicit form of e(v), which is determined by D(v) and the derivative 
of p(v), is not important here. Since ]p(v , )p '  ( v , - 2 ) l  < 1, (3.20) shows 
that the doublet of the largest eigenvalues Vr(v) is asymptotically 
degenerate as M--* oo. 

t 
2iI  

S 

0 

- 2 i I  

Iv-plane 

I_~)x.. ~1-_ a,~: . . . . . . . . .  

Fig. 7. The  two line segments  l and  /. 
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When I ' / 2  < 2 < I ' ,  there arises a case where the saddle point vs deter- 
mined by (3.21) is in the region c. For v ' e the  region c, the asymptotic 
form (3.10c) cannot be used to estimate the logarithms in the integrands of 
(3.18). Assuming that Vs~the region c, we define two line segments l and 
/as  follows: a point v* on the contour C is chosen so that Ira(G) = Ira(v*); 
l connects the points Vs* + 2I' - 22 and G; [ connects G - 22 and 
G*- 2 I ' +  22 (Fig. 7). We calculate P + ( v ) -  P (v) around l and 
l / P +  ( v ) - U P ( v )  around/ .  We use two integral equations: 

LP_(v)J 

= l n  + p  ( v _ Z i , + - ~ o J + l n  +--fi~_(v)J 

+ 8 i i  ~,-2i, d v ' l n  + P _ ( v ' ) J  

x [D(v  - v' - 2I') + D(v '  - v)] 

8iI  ~,- 2;. 2 i i  + ~ J  

X [ D ( v  -- ~ ' - -  2I') + D ( v ' -  v)] (3.22a) 

for v around l; and 

In Lp _--~ j 

+ l ~ - ~ J  - l n  + l / P _ ( v + 2 I '  22)J 

+ i [ l+P+(v ' )  I 
-.~-d.~,~s_=" dr'  In L# ~--P-(~A 

x [ D ( v  - v ')  + D ( v ' -  v - 2I')] 

L ;Vs 2 2 §  + I/p+(v,)l 
, , ,  In 

x [ D ( v  - v') + D(v '  - v - 21')] (3.22b) 

for v around [ (Appendix B ). Suppose that (3.19a) and (3.19b) hold around 
! and ~ respectively. Then the logarithms in the integrands of (3.22) are 
estimated by (3.19); (3.22a) and (3.22b) are integrated by steepest descent. 
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From the monotonicity of p ( v ) p " ( v - 2 )  along l (or [), it follows that the 
dominant contribution as M ~ oe comes from the first (or second) term on 
the rhs of (3,22a) [or (3.22b)]. Keeping only the dominant terms, we get 

P +(v) /P ( v ) ~  1 + 2 p M ( v - - 2 I '  + 2)O 

X pM'(V -- 21' + )Q for v around l (3.23a) 

~ 1 - 2pM(v + 2I') pM~(V + 2I' -- 2) 

for v around [ (3.23b) 

For v around l (or [), (3.23a) [or (3.23b)] with (3.10c) derives (3.19a) [or 
(3.19b)] again. From this fact, though we cannot prove it rigorously, we 
expect that (3.19a) [or (3.19b)] gives the correct asymptotic form of 
P + ( v ) - P  (v) [or 1 / P + ( v ) - I / P  (v)] arouns l (or D. Therefore, the 
argument from (3.18) to (3.21) functions even if the saddle point v, is in the 
region c. 

Now, setting v = 0 (or),), and choosing the values of the pj suitably, 
we consider the original system (A) [-or (B)]. When M and N become 
large with t 1 fixed to be constant, we can use the asymptotic forms of V, 
to estimate the partition functions in (2.4). Substituting (3.12) and (3.20) 
with v = 0  into (2.18) gives 

v (0) 
[2~cN(0) for n = 0 (mod 2) 
< - { Nee(0) pM(v~) pM"(v s -  2) ~cN(0) for n = I (mod 2) (3.24) 

(Note that N is even.) Using (3.24) with (2.3a) in (2.4), we obtain 

~/kB T =  --cos 0• In p(v~ - ),) 

-- sin 0• In p(v~), 0 < O• < re~2 (3.25) 

From the investigation of v = 2  and the relation o-(-0• it is 
found that the expression (3.25) is analytically continued into - ~  < 0• < rc 
with Vs regarded as a function of 0• 

4. E Q U I L I B R I U M  CRYSTAL S H A P E  

The ECS of the eight-vertex model is derived from the anisotropic 
interfacial tension a(0• calculated in Section 3. We represent R = (X, Y), 
the position vector of a point on the ECS, as a function of 0• the slope 
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of the interface at that point. As 0k varies from -~c to n, R(0• sweeps out 
the ECS. According to Wulff's construction, the ECS is given by 

A X =  cos 0•  - sin 0• d~/dO• (4.1a) 

A Y= sin 0z a + cos 0k da/dO• (4.lb) 

where A is a scale factor adjusted to yield the volume of the crystal. (7) 
Substituting (3.25) into (4.1), we find that 

AX/kB T=  - l n  p(v s - )o), A Y/k B T =  - l n  p(v,) (4.2) 

where the saddle point Vs is a function of 0• determined by (3.21) with 
(2.3a). As the temperature is lowered, the ECS deforms into a square from 
a sphere near the critical temperature (Fig. 8). 

It is helpful to calculate the radii of curvature for 0k = ~/4 and 
~z/2, where AR =~(cos  0• sin 0• In the zero-temperature limit, a facet 
appears at the point 0• = g/4; a corner appears at 0• = ~/2. It follows that 

p/R = 1 -~- a - 1  d2~r/dO ~, 0• = ~/4, rr/2 (4.3) 

where p is the radius of curvature and R--IRI.  (23~ For  0k = 

Fig. 8. The equilibrium crystal shape of the eight-vertex model. We rotate the coordinate 
axes through re/4, and choose k B Tln[2km(x)+ 2k-t/a(x)] as the scale factor A. From the 
outermost figure, x =  1.0x 10 -6, 1.0x 10 -4, 0.001, 0.004, 0.01, 0.02, 0.04, 0.07, and 0.12, 
successively. 
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~/4 + 60• (60.  ~ 0), using 
series of 60• as 

Z s =-- - - X 3 / 2 ( 1  + A ( 1 ) 6 0 •  -t-Zl(2)•02 -I- "" ") 

j u )  = f 2 ( x  ' x4) f Z ( _  x, x4)/xl/2Q3(x4) f ( _  1, x 4) 

x f ( x  2, x 4 ) f ( - x  2, x 4 ) 

where 

Fujimoto 

(2.3a) and (3.21), we expand z s into a power 

(4.4a) 

(4.4b) 

~o 
Q(q)= 11 ( 1 - q  n) (4.5) 

n = l  

Substituting (4.4) into (3.25) gives 

k.r  f ( - - x  1/2, x4)j  

{ r- l ' u  x 3/2 x 4 ) l  1 - ~ l n  | a "  1/4./ "~ r ' 

+ ~ L-  f (  _ xl/2, x4)j 

x//2 f2(x ,  x a ) f 2 ( - x ,  x 4) 
+ xl/2 f2( _ 1, X 4 ) f2( _ x  2, X 4) 

f(xl/2' x4) f(x3/2' x4) "~ 60~ + ... (4.6) 
x f (  _ xl/2 ' X4 ) f (  _ x3/2 ' X4)3 

From (4.3) and (4.6), the radius of curvature at 02 = ~/4 is calculated as 

P = x  1/2 f2(x ,  x 4 ) f 2 ( - x , x 4 )  f(xl/2, x4)f(x3/2,x4) 
R f2( 1, 4 2 2 4 1/2 - x ) f  ( - x  , x  ) f ( - x  ,x4)f(--X3/2,  X 4) 

{In lj4I(-x 3j2, x41]  1 • L (4.7) 

In the zero-temperature limit, where x ~ 0, it follows that 

p/R ~ - 1 / x  1/2 in x, 0• = re/4 (4.8) 

The critical point corresponds to the I ~  m limit, with 2 being of the order 
of unity. By the use of the conjugate modulus identity (A.6b), we find that 
near the critical point 

p/R ~ 1 + (16/3) e x p ( -  27zi/2), 0• = ~/4 (4.9) 



Eight-Vertex Model 143 

we get 

Similarly, for 0• = z~/2 + 60• expanding z s as 

zs = - x ( 1  + A(1)30• + A(2~60 2 + ...) (4.10a) 

,~ ( 1 ) = f 2 ( x  ' X 4 ) f ( _  1, x 4) f ( - x  2, x4) /Q3(x  4 ) 

x f2(  - x ,  x 4 ) f ( x  2 , x 4 ) (4.10b) 

(7 k~--~ = In I x  1/2 f ( - x 2 ,  x4) 7 
f ( -  1, x 4) J 

1 Ix f(  -x2,  x4)7 ' f4 (x '  x4) ) 
+ 5 {  - l n  - ~/2 7 (  _--~, x- ~ J + f 4 ( _ x ,  x4); 602. . .  (4.11) 

The radius of curvature at 0• = ~/2 is given by 

P f4(x' X4) /' [- '/2 f(--X2'  X4)7 
= f4(__x, x4) /m - x  . . . . .  L f ( -  1, x 4) J 

It follows that in the zero-temperature limit 

(4.12) 

p/R ,,~ -2 / ln  x, 0a = ~/2 (4.13) 

and that near the critical temperature 

(4.14) p/R ~ 1 - (16/3) e x p ( -  2~zI/2), 0• = zr/2 

As mentioned in Section 1, the eight-vertex model contains the six- 
vertex model and the square-lattice nearest-neighbor Ising model as special 
limits. In the parametrization (2.1), the eight-vertex model reduces to the 
six-vertex model as q ~ 0; the eight-vertex model factors into two inde- 
pendent nearest-neighbor Ising models when q = x 4. The expressions of the 
anisotropic interfacial tension (3.25) and the ECS (4.2) are independent of 
q, however. It is found that the ECS (4.2) can be rewritten into the 
compact form 

(4.15) 

cosh[A(X+ Y)/kB T] + cosh[A(X- Y)/kB T] 

= k~/2(x) + k 1/2(x) 

where k(x) is defined by (1.6b). If the coordinate axes are rotated through 
7r/4 and the scale factor A is redefined suitably, (4.15) is identical to the 

822/67/'1-2-10 
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ECS of the six-vertex model (1.5a) with CI replaced by CBc. For q = x 4, it 
follows from (1.3) and (A.5e) that 

sinh(2 IJll kBT)=s inh (2  LJ2I/kBT)=k t/2(x) (4.16) 

Using (4.16), we can reproduce the ECS (1.5) from (4.15). 
From the beginning of Section 3 until this point we have been 

investigating the special case Uo = 0. The calculation in Section 3 is easily 
extended to the general case - 2 < Uo < 2. For - 2 < Uo < 2, the anisotropic 
interracial tension is given by 

a/kB T= - c o s  0 a In p(v~ - Uo - 2) 

- sinO• - r e < 0 •  < ~  (4.17) 

where Vs is the saddle point of Ip(v)p '7(v-Uo-2)1 ,  determined by 

f(Zs a 1, xa) f(x2zsa 1, x4) f(__XZs, x4) f(__X3Zs, X4) 

= - f ( - z x a  1, x 4 ) f ( _ x 2 z ,  a 1, x4 ) f ( x z , ,  )c4)f(X3Zs, X4) 

z, = exp( - rcv,/2I), a = exp( - rCUo/2I) 

(4.18a) 

(4.18b) 

with the condition 

Vs= 2 + 2iI , t /=O (4.18c) 

and r/ is related to 0• by (2.3a). The expressions of the ECS (4.2) and 
(4.15) are generalized as 

A X / k ~ T =  - l n  p(vs--Uo--2), A Y / k ~ T =  - l n  p(vs) (4.19) 

and 

cosh[A(X+ Y)/kB T] + A3 c o s h [ A ( X -  Y)/k B T] = -A4/2  (4.20) 

respectively. The explicit forms of A3 and A 4 a re  given in the following 
argument. 

We pointed out a relation between the form of the elliptic function 
p(v) and the algebraic curve of the ECS (4.20). We rewrite (4.20) as 

(X2/~ 2 "1- 1 + A3(e 2 + ]~2) ..~ A4~] ~ = 0 (4.21a) 

where 

c~ = exp( - AX/kB T), 11 = exp( - A  Y/k B T) (4.21b) 
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Equation (4.21a) is a symmetric biquadratic relation between ~ and/~. It is 
known that this relation is naturally parametrized in terms of Jacobian 
elliptic functions as 

c~ = ~1/2 N(~ + ~), 

~ A  2 A 3  = - 1 / k  sn t/, A 4 = 2 c"fi q d'n r///~ ff-fi2q 
(4.22) 

(See Chapter 15 of ref. 1.) Here, we define the elliptic modulus 1~ by (A.3a) 

in Appendix A, and the Jacobian elliptic functions s'fi u, c~fi u, and ~n u by 
(A.1) and (A.4), with the elliptic norm q; the quarter-periods are denoted 
by f and i'. If we relate the variables in (4.22) to those in (4.19) by 

i = I ,  i'=2 

= i (2  - v~)/2,  q = i (uo  + 2)/2 
(4.23) 

then (4.22) is identical with (4.19). We stress that the form ofp(v) has the 
source of the symmetric biquadratic relation (4.21a). In this sense, the form 
of p(v) reflects the algebraic curve of the ECS (4.20). 

5. S U M M A R Y  A N D  D ISCUSSION 

The anisotropic interfacial tension of the eight-vertex model has been 
found by the shift operator method. We considered two inhomogeneous 
systems defined on a square lattice of (1 + r / ) M  columns and N rows 
[(1 + r/) M, N even-]. We imposed on the systems periodic boundary condi- 
tions along the horizontal direction and antiperiodic boundary conditions 
along the vertical direction. In each system the lhs of the Mth  column was 
in an antiferroelectric ordered state. An interface ran across this region 
because of the antiperiodic boundary conditions. The interface was sloped 
by the rhs of the Mth  column, which had the effect of shifting the endpoint 
of the interface on the Mth  column from that on the first column along the 
vertical direction. The inhomogeneous systems were analyzed by Baxter's 
commuting transfer matrices argument. It was shown that a doublet of the 
largest eigenvalues of the row-row transfer matrix is asymptotically 
degenerate as M ~ oe with r/ fixed to be constant. The interfacial tension 
of the sloped interface was calculated from the finite-size correction terms 
of the doublet of the largest eigenvalues in the M--* oe limit. 

Using the calculated anisotropic interracial tension, we derived the 
ECS of the eight-vertex model via Wulff's construction. The eight-vertex 
model contains the six-vertex model and the square-lattice nearest- 
neighbor Ising model as the q ~ 0 and x 4 limits, respectively. The ECSs of 
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these two models have been obtained. It has been shown that they are 
essentially the same. This fact was extended to the q independence of the 
ECS of the eight-vertex model. The ECS of the eight-vertex model is a 
simple algebraic curve in the X-Y plane. We regarded the algebraic curve 
as a symmetric biquadratic relation between ~=exp(-AX/kBT) and 
fl = e x p ( - A  Y/k~ T). It was shown that an elliptic function appearing in the 
expression of the interracial tension has the form to parametrize this 
symmetric biquadratic relation naturally. In other words, the form of the 
elliptic function reflects the algebraic curve of the ECS. 

Here, we reexamine the ECS of the hard-hexagon model, which was 
been derived in ref. 19. The anisotropic interfacial tension of the hard- 
hexagon model is represented as 

kB T ~,~ cos O • ln l~(asx)l + cos 0• lnl~(as)l , 

- ~ < 0 •  (5.1) 

where as is determined as a function of 0~ by (3.10) of ref. 19; the elliptic 
function if(a) is defined by (3.6b) of ref. 19. By the use of Wulff's construc- 
tion, the ECS is obtained as 

AX 2 
kBT- x/~ ln  IO(asX)[-~331n LO(as)l, 

AY 
in l~9(a,)l (5.2) kBT 

We can rewrite (5.2) in the compact form 

~2/~2 +AI~/~+ (~ +/~)=0 (5,3a) 

where 

c~ = exp[- - ~  A(X+ ~ Y)/2kB T3, /~ = exp(.,f3 AX/k, T) (5.3b) 

The hard-hexagon model is regarded as a special case of the hard-square 
model. (1) We can easily extend the analysis in Section 3 of ref. 19 into 
regime II of the hard-square model. For regime II of the hard-square 
model, (5.3a) is generalized as 

Bo~3fl 3 + A1~232 + ~fl(~ + j~) + A4~ fl + A 6 = 0 (5 .3a ' )  
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We do not know how (5.3a') is parametrized in terms of elliptic 
functions. In Chapter 15 of ref. 1, however, it is shown that the symmetric 
biquadratic relations between ~ and/~ 

A~c~z~ z + A2~fl(o~ + fl) + A3(e z +/~2) .~ A4~fl 

+ As(c~ + fl) + A 6 = 0 (5.4) 

are naturally parametrized in terms of elliptic theta functions, the form 
being 

= q~(u + t/), /? = ~b(u) (5.5a) 

where 

~(u) = ~H(u + 7) H(u - y)/H(u + 6) H(u - 6) (5.5b) 

and H(u) is the elliptic theta function defined by (A.la) in Appendix A. 
Equation (5.3a) is a special case of (5.4). We relate the norm q and the 
argument u of the theta functions to x and a,, the variables in (5.1) and 
(5.2), by 

q2 = x 3, exp( - i~u/1) = a s (5.6) 

Set ~ = x I/3, 7 = q = -2i / ' /3 ,  and 6 = 0 in (5.5b). Then, the elliptic solution 
(5.2) is reproduced from (5.5a). Thus, the form of ~,(a) appearing in (5.1) 
is directly related to the algebraic curve of the ECS (5.3a) [or (5.3a')]. 

Besides the hard-hexagon model and the eight-vertex model, there are 
some models whose interfacial tension has been calculated along a special 
direction. For the Sogo-Akutsu-Abe model (24) and the regimes III and IV 
of the hard-square model, (25) the interfacial tension is written in terms of 
the same elliptic function that appears in the expression of the interfacial 
tension of the eight-vertex model. We expect that the ECSs of these two 
models are represented as an algebraic curve identical to the ECS of the 
eight-vertex model. This will be clarified in a further investigation. 

A P P E N D I X  A 

We define the elliptic theta functions with the norm q and the 
argument u by 

. nu ( nU ) _q2n) H(u)=2ql /4s ln-~ ~ 1--2q2ncos--[-+q an (1 (A.la) 
r t = l  

n u I ~  ( 1 +  2q2~ cos nu 4n• q2n) Hi(u)=Zql /4cos-~  =1 --f +q ) ( 1 - -  (A.lb) 
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O(u)= l _ 2 q Z n - l c o s _ f + q 4 ,  2 (l_q2n) 
n= l  

Ol( / .g)= l+2q2~-lcos_~_+q4n 2 (1 
n=l  

The quarter-periods are given by 

2 n=l  ~ 1 - - q  2n-1 1 T ~  "~j 

I' = - rc-~I ln  q 

(A.lc) 

(A.ld) 

(A.2a) 

(a.Zb) 

The modulus k and the conjugate modulus k' are 

( l+q2n ) 4 
k = 4 q  1/2 [-I l+q2 , -1  (A.3a) 

n ~ l  
4 

= + qan- 2j (A.3b) 

By the use of the theta functions, Jacobian elliptic functions are represented 
as 

sn u = k 1/~H(u)/O(u) (A.4a) 

cn u = (k'/k) m Hl(u)/O(u) (A.4b) 

dn u = k' mO l(u)/O(u ) (A.4c) 

With q replaced by ~= ql/2, /4(u), O(u), and k are given by (A.la), 
(A.lc), and (A.3a), respectively: 

B(u)= 2CII/4 . rtu ( rtu ) ~2n) san~-~ I ]  1-2~2"cos-~-+~ 4" ( 1 -  (A.5a) 
n = l  

O(u)= 1 -  202"-x cos ~-+O 4n-2 ( 1 -  (A.Sb) 
n ~ l  

k=4ql/2 I~I 1 +~2,-~ (A.5c) 
n= l  

We define the ~6 function by 

s~ u = ~ -  1 /2~(u) /O(u)  (A.5d) 
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Then, sn(u) and ~-ff(u) satisfy the relation 

fi~ ~ u = 2k l/2 sn u/(1 + k sn 2 u) (A.5e) 

Equation (A.5e) is essentially Landen's transformation. 
We define f (p ,  q) as 

f ( p , q ) = ( 1 - p )  f i  ( 1 - p q " ) ( 1 - p - l q " ) ( 1 - q  ") (A.6a) 
n=0 

The function f (p ,  q) satisfies the conjugate modulus identity 

ie-'~f(e 2'~, e - ' ) =  exp \8  2e + e 

( - - - ,  ( A . 6 b )  x f  exp e 

A P P E N D I X  B 

From the conditions (i)-(iii) given in Section 3 we derive Eqs. (3.10), 
(3.12), (3.16), and (3.22)31'18) We start by defining four functions X+(v) 
and Y+(v) by 

1 f~+~+2i~ ln[ l+Pr(v ' )]  
In X+(v) = ~-~-~ + t~- 2i, exp-~(v--v ') /2I] - 1 dr', 

R e ( v ) > Z + f l  (B.la) 

--1 [).+fl'+2iI ln[1 + Pr(V')]  
In X(v)=~/-/-ff0~+a, 2i, e x p [ r r ( v - - - ~ -  1 dr', 

Re(v) < ;~ + fl' (B. lb)  

1 ,-p,+2i, ln[1 + 1/P,.(v')] dr', 
In _ 2 , ,  1 

Re(u) > - f l '  (B.lc) 

y ( v ) _ - l i - ~  +2i' l n [ l + l / P r ( v ' ) ]  In 
- 4ii ~-2~t exp[~z(v- v')/2[] - l dr', 

Re(v) < - f l  (BAd) 

where 0 < fl < f l '< 3. From Cauchy's residue theorem, it follows that 

X + ( v ) X  (v )=l+Pr(v ) ,  2 + f l < R e ( v ) < 2 + f l '  (B.2a) 

Y+(v) Y (v)=l+l /P, . (v) ,  - f l ' < R e ( v ) <  - f l  (B.Zb) 



150 Fujimoto 

Using (B.2a), we define X+(v)  for Re(v)~<2+fi and X (v) for 
Re(v) >~2+ fl'. The condition (ii) shows that X+(v)  is ANZ if v is on the 
rhs of the contour C, and that X ( v )  is ANZ if R e ( v ) < 2 + 6 .  Similarly, 
(B.2b) is used to define Y+(v)  for Re(v)~< -B '  and Y (v) for Re(v)>~ -ft.  
It is found that Y+(v)  is ANZ if Re(v)> -6 ,  and Y ( v )  if v is on the lhs 
of C. Substituting (B.2) into (3.2), we find that 

Vr(v) = O2(v) q(v - 22') X +(v) X_(v ) /q (v )  (B.3a) 

Vr(V ) = ~1(/)) q(/2 + 2;~') Y+(U)  Y ( v ) / q ( v )  (B .3b)  

The functions 061(v ), r and q(v) are rewritten as 

r 1 (~)) = ,'~ Mt~ MY/ (m~ q 2)  V l ~" M + l Y 2"zmx-m exp 2-I 1 + 

• A(2 - v) A"(22 - v) A(2I '  - 2 + v) A"(2I '  - 22 + v) (B.4a) 

t~ Mn Mrl 1 ~ 2mZ -- mX m exp 2 
062(v)=t-1 VM+ 2I  1 +17 

X A(2 + v) A"(v)  A(2 I '  - 2 - v) An(2I  ' - 2) (B.4b) 

q(v) = 7 m exp[~(mv - v 1 - v2 . . . . .  vm)/4I ] F(v) G(v - 2I') (B.4c) 

= ( - ? ) m  exp[lr(vl + v : +  --- + v , , - m v ) / 4 I ]  F ( v + 2 I ' )  G(v) (B.4d) 

where 7 and A(v)  are given by (3.14) and (3.15), respectively; F(v)  and G(v) 
are defined as 

F (v)=  f i  f i  { 1 - q ' e x p [ - ~ ( v - v j ) / 2 I ] }  (B.5a) 
j = l  n=0 

G(v)= f i  f i  { 1 - q " e x p [ ~ ( v - v j ) / 2 I ] }  (B.5b) 
j ~ l  n=0  

Substitute (B.4) into (B.3); use (B.4c) for q ( v ) i n  (B.3a) and q(v +22')  in 
(B.3b); use (BAd) for q ( v - 2 2 ' )  in (B.3a) and q(v) in (B.3b). Then, it 
follows that 

Vr(v) = rpMpM"+l?2mx--2mL+(v) L (v) (B.6a) 

r 'qg'qgrl  1)~2mx 2"M+(v)  M (v) (B.6b) ~ ' H 1  k 'M+ 

where 

L + (v) = A(2 + v) An(v) F(v + 2 I ' -  22) X +(v)/F(v) (B.7a) 
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L ( v ) = A ( 2 I ' - 2 - v ) A " ( 2 I ' - v ) G ( v - 2 2 ) X _ ( v ) / G ( v - 2 I  ') (B.7b) 

M +(v) = A(2I' - 2 + v) A"(2I ' - 22 + v) 

x F(v + 22) Y+ (v)/F(v + 2I') (B.7c) 

M_(v)  = A ( 2 -  v) A"(22 - v) G(v + 22 - 2I') Y_(v)/G(v) (B.7d) 

Noting (iii), we find that L+(v) is ANZ for Re(v)>0,  L (v) for 
Re(v)<6 ' ,  M+(v) for R e ( v ) > 2 - 5 ' ,  and M (v) for Re(v)<2, with 
5' = min{2I' - 2, 22, 2 + 5 }. From (B.6), we get 

M+(v ) /L+(v )=L  (v)/M (v) (B.8) 

Both sides of (B.8) are entire, since the lhs is ANZ for Re(v)> 0 and the 
rhs is ANZ for Re(v)< 2. Moreover, they are bounded in the Re(v)--, _+oo 
limit. From Liouville's theorem, it follows that they are constant. The fact 
that the rhs of (B.8)~  1 as Re(v )~  oo shows that this constant is 1. 
Finally, we obtain 

M + ( v ) = L + ( v )  (B.9a) 

M_ (v) = L_ (v) (B.9b) 

Two functions S+ (v) are introduced as 

S+ (v) = F(v + 22) F(v)/A(v + 2) A"(v) 

S (v) = G(v) G(v - 22)/A(2 - v) A"(22 - v) 

(B.10a) 

(B.10b) 

Equation (B.9a) gives the recursion relations for S+(v) 

S+ (v) = S+ (v + 2I' - 22) X+ (v)/Y+ (v) (B.11a) 

Similarly, from (B.9b), it follows that 

S ( v ) = S _ ( v - 2 I ' + 2 2 )  Y_(v) /X_(v)  (B.11b) 

Equations (B.11) are solved as 

S+(v )=  f i  X + [ v + 2 n ( I ' - 2 ) ] / Y + [ v + 2 n ( I ' - 2 ) J  
n = O  

S (v)= f i  Y [ v - 2 n ( I ' - 2 ) ] / X  [ v - 2 n ( I ' - 2 ) ]  
n = 0  

(B.12a) 

(B.12b) 
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Regarding (B.10a) and (B.10b) as a recursion relations for F(v) and G(v), 
respectively, we find that 

A [v + (4n + 1 ) 2] A"(v + 4n2) S+ (v + 4n2) 
F(v) 

11 A [ v +  (4n+ 3) 2] A " [ v +  (4n+2)  2] S + [ v +  (4n+2)  2] 
n = 0  

(B.13a) 

f i  A [ ( 4 n + l ) 2 - v ] A " [ ( 4 n + 2 ) 2 - v ] S  ( v -  4n2) 
G(v)-. = o -  A [(-~n + 3] -2~ v ]-A~-E ( T n  + 4))-- ~ s- ~ - - i ~  + ~ 2] 

(B.13b) 

Substitute (B.4) into (3.1); (B.4c) is used for q(v +22'); (BAd) is used 
for q(v -2Z ' ) .  Then, using (B.13), we obtain the expression 

Pr(v) = rpM(v) pM"(V -- 2) 

S+ [v + (4n + 2) 2] S+(v + 21' + 4n2) 
x 

I I  S + [ v + ( 4 n + 4 )  Z ] S + [ v + 2 I ' + ( 4 n - 2 ) 2 ]  n ~ O  

l~l S [v - 2I' - (4n - 2) 2] S_ [v - (4n + 4) 2] 
x (B.14a) 

,=oil S ( v - 2 I ' - 4 n 2 ) S _ [ v - ( 4 n + 2 ) 2 ]  

where p(v) is defined by (3.11). By the use of the periodicity relation 
(2.17b), Eq. (3.1) is rewritten as 

Pr(v) = rsq-m/Zx-Z"-M~zmqbl(v) q(v + 2Z')/~bz(V) q(v - 22' - 2I') (3.1') 

= rsqm/2x -2m + Mn(~I(V ) q(v + 22' -- 2I')/(~2(V ) q(v -- 22') (3.1") 

Replacing (3.1) by (3.1') or (3.1") in the derivation of (B.14a), we get 

Pr(V) = S+ (v) S_  (v - 2I' + 2Z)/S+ (v - 2)0 S (v - 2I') (B.14b) 

= pM(V) pM~(v -- Z) pM(V -- 2I') pM"(V -- 2 -- 2I') 

S + [ v -  2I' + (4n+ 2) 2] S +(v+ 2I' +4nZ) 
x I I  

n = O  

f i  S [ v - 4 I ' - ( 4 n - 2 ) 2 ] S  [ v - ( 4 n + 4 )  2] 
x ,=o ~ _  (v ~-- 4-1'-- 4nn2-) S--_ [-~- ( 4 n +  2) f ]  (B.14c) 

Substituting (B.12) into (B.14c) gives the integral equations (3.22). From 
(B.12a), it follows that S+(v) is exponentially close to 1 as M--* oo if v is 
on the rhs of C. Equation (B.12b) shows that S ( v )  is exponentially close 
to 1 when M is large and v is on the lhs of C. For v 6 the region a and M 
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large, S+(v) and S_(v) on the rhs of (B.14a) can be replaced by 1. So, we 
get (3.10a) as M ~ o e .  Similarly, for vethe regions b and c, (3.10b) and 
(3.10c) are found from (B.14b) and (B.14c), respectively. [The three 
regions a, b, and c are defined in the argument following (3.11).] 

Replace L_(v) by M(v) in (B.6a); substitute (B.7a) and (B.7d) into 
(B.6a); and use (B.13). Then, it follows that 

fX+(v) 11 ~q S+[v+2I'+ ( 4 n - 2 )  2] S + [ v +  (4n+2) 2] Vr(v) rK(V) 
~=o S+(v+2I'+4n2) S+(v+4n2) 

xY (v) FI S_[v-2I ' - (4n-2lZ]S_Ev-(4n+2)2].}  (B.15) 

where x(v) is defined by (3.13). Using (B.12) in (B.15), we get the integral 
equation (3.16). On the rhs of (B.15) the contribution from the curly 
bracket is exponentially close to 1 for 0 < Re(v) < 2 and large M. Thus, we 
obtain (3.12). 
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